Benha University	Final Exam Course: Mathematics 4 Foculty of Engineering - Shoubra Department of Elec. Eng. and Control Duration: 2 hours	Date : January, 2019

The exam consists of one page \quad No. of questions: 4 Answer All questions \quad Total Mark: 40

Question 1

Solve the following equations:
(a) $(1+\sin x) d y-y \cos x d x=0$
(b) $y^{`}-\frac{2}{x} y=\mathrm{x}^{4}$
(c) $y^{\prime \prime}-4 y^{`}+4 y=1+e^{x}$
(d) $y^{\prime \prime}+y=4+3 \cos 2 x$
(e) $y^{\prime \prime}-2 y^{`}+y=x^{3}-x$
(f) $y^{\prime \prime}+2 y^{`}+4 y=\sin 2 x$

Question 2

(a)Find the L.T of :
(i) $f(t)=1+e^{t}+\sinh 2 t$
(ii) $f(t)=t \cdot \sin t+e^{2 t} \cdot \cos t$
(b)By L.T, solve the equation : $\mathrm{y}^{\prime \prime}-2 \mathrm{y}^{`}+\mathrm{y}=\mathrm{e}^{\mathrm{t}}, \quad \mathrm{y}(0)=0, \quad \mathrm{y}^{\prime}(0)=1$.

Question 3

(a) Using the bisection method, find a root to the equation : $3^{\mathrm{x}}+2 \mathrm{x}-2=0$ in the interval $[0,1]$, number of iterations is 3 .
(b)Find the integrals : (i) $\int_{0}^{2} \frac{1}{x^{4}-x} d x \quad$ (ii) $\int_{0}^{\infty} \frac{x^{2}}{1+x^{4}} d x$
(c)Find $f^{\prime}(3)$ where $f(x)=\left\{\begin{array}{ll}x^{2}+1, & x>3 \\ 2^{x}+2, & x \leq 3\end{array}\right.$ and $h=0.1$

Question 4
(a)Find the curve $y=a+b x+c x^{2}$ that fits the data:

$$
(1,3),(2,4),(4,7),(5,13),(6,20)
$$

Also, find $\bar{x}, \bar{y}, \sigma_{x}, \sigma_{y}$ and the correlation coefficient r .
(b)Find the probabilities $\mathrm{P}(\mathrm{x}=3), \mathrm{P}(\mathrm{x} \leq 5), \mathrm{P}(\mathrm{x}<5), \mathrm{P}(\mathrm{x}>4)$ from the data:

x_{i}	$\mathrm{x}<2$	2	3	4	5	6	$\mathrm{x}>6$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$	0	0.2	0.2	0.3	0.2	0.1	0

(c)If x is random variable with pdf $f(x)=2(1-x), 0 \leq x \leq 1$.

Find $\mu, \sigma, \mathrm{P}(\mathrm{x}=0.4), \mathrm{P}(\mathrm{x} \leq 0.4), \mathrm{P}(\mathrm{x}>0.4)$

